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The main features of the different linear gravity theories are reviewed. In particular, the
supersymmetric extension of the Jackiw–Teitelboim (1 + 1) linear gravity is considered
in detail within the canonical exterior formalism. In this context, the role of the several
fields are analyzed. The constraints and the field equation are found. Finally, this
supergravity model is treated in the second-order formalism.
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1. INTRODUCTION

Several years ago, a class of linear gravity theories based on the Riemann
scalar curvature R was proposed. The first model of two-dimensional gravity was
given by Jackiw and Teitelboim (JT) by means of dimensional reduction of the
usual Einstein–Hilbert action in (2 + 1) dimensions (Jackiw, 1985; Jackiw and
Teitelboim, 1984; Teitelboim, 1983). Two-dimensional gravitational and vector
gauge theories by reduction of D = 3 topologically massive ones were also con-
sidered (Aragone et al., 1987). Subsequently, these research engendered much
further ones (Grumiller et al., 2002).

The simplest of these models (Teitelboim, 1983) requires an additional non-
geometrical field φ in the action

I1 =
∫

d2x φ(R − λ), (1)

where φ is an invariant world scalar acting as a Lagrangian multiplier enforcing
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the field equation

R − λ = 0. (2)

Once the additional field has been introduced, various generalizations and
modifications of (1) and (2) can be considered, and so different dynamics for the
fields R and φ are possible.

Later on (Callan et al., 1992; Verlinde, 1992), a similar model which is “string
inspired" was given and whose action writes

I2 =
∫

d2x (φ R − λ). (3)

In this case, the equation of motion from varying φ is

R = 0, (4)

while varying the flat metric gµν = hµν the equation reads

∂µ ∂ν φ = 1

2
λ hµν. (5)

Consequently, the “black-hole" solution appears (Elitzur et al., 1991; Mann,
1992; Witten, 1991), and the model becomes interesting from the quantum point
of view.

Frequently, linear two-dimensional gravity or supergravity are used as a
theoretical laboratory for studying properties also present in supergravities of
greater dimensions. In the last years there has been a renewed interest in
(1 + 1)-dimensional models. Perhaps one reason is the presence of black holes
in these models. Another reason is that, because of the simplicity of the (1 + 1)-
dimensional models, one can gain a better understanding of the quantum treatment
of gravity theories without the difficulties of the four-dimensional world. In this
paper, we investigate the N = 1 supersymmetric extension of the JT model in the
second-order canonical formalism. Other two-dimensional supergravity theories,
for instance the supersymmetric extension of the string-inspired dilaton gravity
model, could also be treated in the same way. The paper is organized as follows:
In Section 2, the main features of different two-dimensional linear gravities are
reviewed. The N = 1 supersymmetric extension of the model based on the graded
de Sitter group is also analyzed. In Section 3, starting from the exterior canoni-
cal formalism the total Hamiltonian, the constraints and the equation of motion
are found. In Section 4, the second-order formalism is constructed and the set of
first-class constraints, generators of all the local gauge symmetries of the model,
is computed by projecting on the spatial surface some of the motion equation
obtained in the CCF. Finally, in Section 5 the conclusions are given.
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2. REVIEWING THE MAIN FEATURES OF TWO-DIMENSIONAL
LINEAR GRAVITY AND SUPERGRAVITY

From the gauge-theoretic formulation point of view, the aforementioned
models have the remarkable property of possessing a topological and gauge in-
variant formulation (Cangemi and Jackiw, 1992; Chamseddine and Wyler, 1989;
Fukuyama and Kamimura, 1985; Montano and Sonnenschein, 1989).

Of particular interest are the gauge theoretical formulation given in Fukuyama
and Kamimura (1985), and Chamseddine and Wyler (1989). To this end the de
Sitter or anti-de Sitter groups are used satisfying the SO(2, 1) algebra

[Pa, J ] = εab P b, [Pa, Pb] = −1

2
λ εab J, (6)

where J and Pa are respectively the Lorentz and translation generators.
The discussion about the problem of the gauge theoretical formulation for

the action I2 was given in Teitelboim (1983) and it is based on the non-semisimple
Poincaré group whose algebra

[Pa, J ] = εab P b, [Pa, Pb] = 0, (7)

is the λ → 0 contraction of the algebra (6). However, there are various unexpected
features in this formulation. For instance, it can be shown (Cangemi and Jackiw,
1992) that the transformation law for the Lagrange multipliers is an unfamiliar
affine expression; the Lagrangian density is not invariant but changes by a total
derivative. It is possible to construct an invariant Lagrangian density (Cangemi and
Jackiw, 1992) by considering the following centrally extended Poincaré algebra,
which is an unconventional contraction of the algebra (6)

[Pa, J ] = εab P b, [Pa, Pb] = εab

i

2
λ I. (8)

In (8) was added the central element I to the generators which produce a
modification of the translation algebra. In Cangemi and Jackiw (1992), taking into
account the new connection and curvature generated by the central element I , the
gauge transformations and the invariance of the Lagrangian density of this model
were discussed.

We see that various model of linear gravity theories involving non-
geometrical fields acting as Lagrange multipliers can be constructed. From the
gauge invariant point of view two different members can be distinguished: The
original model (Jackiw, 1985; Jackiw and Teitelboim, 1984; Teitelboim, 1983)
based on the SO(2, 1) group and the “string-inspired” model (Callan et al., 1992;
Verlinde, 1992) based on the extended Poincaré group. In particular, in Cangemi
and Jackiw (1992) the model is based on an unconventional contraction of the
SO(2, 1) model. This last is possible because of the ambiguity of two-dimensional
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angular momentum. Really, in Equations (6) it can be replaced J by J + sI/i and
λ by λ/s and set s → ∞ giving rise to Equation (8).

Recently (Guralnik et al., 2003; Grumiller and Kummer, 2003), the two-
dimensional reduction of the invariant action of the gravitational Chern–Simons
model was studied. The gravitational three-dimensional Chern–Simons term can
be reduced by a Kaluza–Klein like ansatz, decomposing the three-dimensional
metric into a two-dimensional metric, a U (1) gauge field A = Aµ dxµ and a
scalar field φ. Later on, by means of conformal invariance it is possible to choose
φ = 1. The action of the emergent linear gravity theory depend on the scalar
two-dimensional curvature and on the Abelian dual field strength F . Therefore,
the model describe the two-dimensional gravity interacting with the gauge field 1-
form A. Classical solutions have been constructed locally in Guralnik et al. (2003),
while in Grumiller and Kummer (2003) the solutions are extended at global level,
in order to construct the Carter–Penrose diagrams.

In Guralnik et al. (2003) starting from the Chern–Simons terms for the
matrix-valued gauge connections Aµ, the gravitational Chern–Simons term can
be constructed for the spin connection �µ. Later on, by means of dimensional
reduction it is shown how the three-dimensional gravitational Chern–Simons term
produce a two-dimensional topological theory. The dimensional reduction is car-
ried out by means of a Kaluza-Klein ansatz for the three-dimensional metric tensor.
Apart from surface contribution the two-dimensional action writes

ICS = − 1

8π2

∫
M2

d2x
√−g(f r − f 3), (9)

where r is the two-dimensional scalar curvature and moreover (9) depends on
the Abelian dual field strength f = −2∗dA (being ∗ the Hodge operation).
Thus, a two-dimensional gravity theory interacting with the gauge field 1-form A

appears.
So, in this context the equations of motion are found, and the local classical

solutions are constructed. It is shown that two types of solutions exist, symmetry
breaking and kink solutions, which structurally are similar to certain flat-space
kinks. It is interesting to note that the kink make possible an space whose geometry
is asymptotically anti-de Sitter. At small distances, the scalar curvature is positive
and it is vanishing at an intermediate point. So, the effect of the kink is analogous
to a geometric gravitational force. The two-dimensional action (9) is formally
similar to the action of the dilaton model, when the field f is identified with the
dilaton field.

In Grumiller and Kummer (2003) the discussion to a global level is given. This
is done by written the action (9) using target space coordinates Y , X,X+, X− and
gauge fields A, ω, V + and V −. Therefore, the action (9) is equivalent to the



Two-Dimensional Supergravity in the Canonical Exterior Formalism 545

following gravity first-order action

ICS = 1

4π2

∫
M2

d2x [Xa(D ∧ V )a + X d ∧ω + Y d ∧A + ε 	(X, Y )], (10)

where 	(X, Y ) = 1
2 (XY − X3). In fact the transition from (10) to (9) is very easy.

In Equation (10) the coordinate Y acts as Lagrange multiplier for gauge curvature.
Variation of Y in (10) yields X = f , precisely the dual field strength in (9).
Moreover, the first term in the action (10) requires vanishing torsion, and so the spin
connection is replaced by its expression in a second-order formalism. Applying
well-known methods used in the framework of first-order gravity models, it is
possible to construct solutions and to discuss their global properties and structure.
It can be seen that the reformulation (10) shows advantages from classical as well
as quantum point of view (Cattaneo and Felder, 2000; Grumiller et al., 2002).

In Chamseddine (1991), Cangemi and Leblanc (1994), and Park and Stro-
minger (1993), following different approaches, the N = 1 supersymmetric exten-
sions of the aforementioned models were developed. In Chamseddine (1991), the
starting point is the supersymmetric extension of the JT model whose action was
written in Equation (1). This is done by using a superfield formalism in superspace,
that after integrating out the Grassmann variables and eliminating the auxiliary
fields by using the classical equations of motion, the supersymmetric action can
be written in (1 + 1) spacetime. In the framework of gauge theory, this model
is based on the two-dimensional graded de Sitter group, whose graded algebra
associated to de Sitter supergroup Osp(1, 1 | 1) is given by

[Pa, Pb] = − λ
4 εab J, [Pa, J ] = εab Pb

[Qα, J ] = 1
2 (γ 5)αβQβ, [Pa, Qα] = λ

4 (γa)αβ Qβ

{Qα, Qβ} = −2i(γ a)αβ Pa + i λ (γ 5)αβ J.

(11)

Let QA be any generator of the graded algebra mentioned earlier, where the
compound index A = [(ab), a, α] runs in the tensor, the vector and the spinor
ranges, respectively. Then, the graded invariant non-degenerate inner product,
defined by 〈ξA QA, ηB QB〉 = (−1)|A||B| ξAηB 〈QA, QB〉, is explicitly written
as

〈Pa, Pb〉 ≡ hab 〈J, J 〉 ≡ 4

λ2
〈Qα, Qβ〉 ≡ − 8i

λ
εαβ, (12)

where |A| and |B| indicate the Fermi grading.
Consequently, the action for the supersymmetric extension of the JT model

is formally written as

S =
∫

d2x εµν 〈ζ, Fµν〉, (13)
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where F = dµ + µ ∧ µ is the field strength associated with the algebra-valued
1-form gauge field

µ = V a Pa − ω J + 1

2
ξα γ 5 Qα. (14)

In Equation (14) V a , ω = 1
2 εab ωab and ξα are, respectively, the zweibein,

the spin connection and the gravitino gauge fields; and ζ = ηa Pa + ηJ J +
ηα Qα is a world scalar with value in the graded algebra (11).

Therefore, the explicit form of the supersymmetric action (13) in components
is written as follows

S =
∫

d2x(−g)1/2

[
ηa εµν

(
∂µ Vaν − εab ωµ V b

ν − i

4
ξ̄µ γa ξν

)

− 4

λ2
ηJ εµν

(
∂µ ων + 1

8
λ2 εab Vaµ Vbν + i

8
λ ξ̄µ γ5 ξν

)

+ 4i

λ

(
εµν Dµξ̄ν γ5 + 1

4
λ ξ̄µ γµ

)
η

]
, (15)

where we choose the 2 × 2 real γ -matrices satisfying γa γb = ηab + γ 5 εab, γ 5 =
γ 0 γ 1.

In Park and Strominger (1993), an N = 1 supersymmetric version of two-
dimensional gravity coupled to matter is analyzed. At least two interesting results
are clearly found: (i) the supersymmetry is used to prove positive-energy theorems
for a large class of generalized dilaton gravity; (ii) supersymmetry suggests a
spinorial expression for the Arnowitt–Deser–Misner energy M . By using this
expression is proven that M is non-negative for smooth initial data asymptotic to
the linear dilaton vacuum.

Recently (Bergamin et al., 2004), the Bogomolnyi–Prasad–Sommerfield
black holes were studied in the framework of the two-dimensional dilaton su-
pergravity. This was done in the first-order formalism by starting from the action
for the graded Poisson–Sigma model. The possible solutions with vanishing and
non-vanishing fermions were found. The knowledge of the general analytic solu-
tion in two-dimensional dilaton supergravity plays an important role. In particular
it is shown that the geometry of solutions with non-vanishing fermions must be
Minkowski space and so, there does not exist supersymmetric black holes with
dilatino or gravitino.

Therefore, the interesting results obtained from the supersymmetric extension
of two-dimensional linear gravities, gives a reason to found these models by using
the supergroup manifold approach.
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3. CANONICAL EXTERIOR FORMALISM FOR A LINEAR
SUPERGRAVITY MODEL

Let us consider the problem by starting from the first-order canonical co-
variant formalism (CCF) on the group manifold (Foussats and Zandron, 1990a,b;
Nelson and Regge, 1986). So, the first step is to write the Lagrangian density
defined by (15) using exterior calculus. For a supergroup G and a bosonic gauge
subgroup H ⊂ G, the physical superspace is defined by the coset manifold
M2 = G/H . The Lagrangian density is a bosonic 2-form functional of the dy-
namical fields and their exterior derivatives. Because the physical content of the
theory is present in the coset manifold M2, all the fields must be considered only
as reduced forms, i.e. forms defined on M2. Moreover, these forms are written in
the holonomic basis dxµ (µ = 0, 1).

In the first-order exterior formalism the dynamics is described by the three
1-form gauge fields ωab (spin connection), V a (zweibein) and ξ (gravitino) and
the three 0-form fields ηJ , ηa and η. The three 0-form fields are non-geometrical
objects and are introduced with the purpose of obtaining rheonomic equations of
motion, i.e. equations compatible with the Bianchi identities as it is required by
the group manifold approach.

Consequently, the Lagrangian density is written as

L = ηa Ra − 4

λ2
ηJ R + 4i

λ
ρ̄ γ 5 η − 1

2
ηJ V a V b εab

− i

2λ
ηJ ξ̄ γ 5 ∧ ξ − i(ξ̄ γ b η) ∧ V a εab. (16)

In (16) R (Riemann curvature), Ra (torsion), and ρ (gravitino curvature)
are the curvature 2-forms corresponding to the gauge fields and they are given
by

R = dω, (17)

Ra = D V a − i

4
ξ̄ γ a ∧ ξ = dV a − ω ∧ Vb εab − i

4
ξ̄ γ a ∧ ξ, (18)

ρ̄ = D ξ̄ = dξ̄ + 1

2
ω ∧ ξ̄ γ 5. (19)

Looking at the Lagrangian density (16) we see that it is linear in the curva-
tures taking the general form L = RA(µ) ∧ νA(µ) + 	(µ). In the group manifold
approach the third principle states that the functional coefficients 	(µ) and νA(µ)
must satisfy the condition (Castellani et al., 1983)

A�	 + D νA = 0, (20)
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for the vacuum solution RA = 0. The coefficients 	(µ) and νA(µ) do not depend
on the spin connection and they must be invariant under transformation of the
bosonic gauge symmetry group H .

The idea is to construct the first-order CCF starting form a Lagrangian that
differs from (16) by an exterior derivative i.e, a Lagrangian density not containing
spin-connection derivatives. This will be useful in the second-order formalism
where the canonical conjugate momentum to the spin connection field variable ω

is a strongly equal to zero quantity.
As it is well known in the CCF, the canonical conjugate momenta πA =

δL/δdµA of the fields µA = (ω, V a, ξ, ηJ , ηa, η) are obtained by functional vari-
ation of the Lagrangian with respect to the “velocities” dµA. So, the momenta
associated with the three gauge fields are 0-forms and the others three momenta
associated with the auxiliary fields are 1-forms.

Therefore, by looking at the Lagrangian (16) we see that the set of primary
constraints are written

�a(V ) = πa(V ) − ηa ≈ 0, (21)

�a(ω) = π (ω) ≈ 0, (22)

�α(ξ̄ ) = πα(ξ̄ ) − 4i

λ
(γ 5 η)α ≈ 0, (23)

�a(ηa) = πa(ηa) ≈ 0, (24)

�J (ηJ ) = πJ (ηJ ) − 4

λ2
ω ≈ 0, (25)

�̄α(ηα) = π̄α(ηα) ≈ 0. (26)

By considering the definition and properties of the graded form-brackets
(Foussats and Zandron, 1990a), it is possible to compute the form-brackets
(�A, �B) for pairs of constraints. It is straightforward to prove that all the primary
constraints (21)–(26) are second-class ones, that is

(�A, �B) 
= 0. (27)

In the CCF, the conserved first-class dynamical quantity describing the dy-
namics of the system is the extended Hamiltonian HT , and it is the bosonic 2-form
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defined by (Foussats and Zandron, 1990a)

HT = Hcan + 	A ∧ �A, (28)

where the Lagrange multipliers 	A can be unambiguously determined. This is
done when the fundamental equation of motion in the CCF is taken into account
giving rise to the general result

	A = dµA . (29)

In (28) the canonical Hamiltonian Hcan = dµA ∧ πA − L is given by

Hcan = ηa

[
ω ∧ Vb εab + i

4
(ξ̄ ∧ γ a ξ )

]

+ηJ

[
1

2
V a ∧ V b εab + i

2λ
(ξ̄ ∧ γ 5 ξ )

]

[
−2i

λ
ω ∧ ξ̄ + i (ξ̄ γ b) ∧ V a εab

]
η. (30)

The field equations of motion in the CCF are given by the consistency
conditions on the primary constraints, i.e, d�A = (�A, HT ) ≈ 0. After some
algebraic manipulation they read

d�a(V ) = [ηb ω εab + ηJ V b εab − i(ξ̄ γ b η) εab − dηa] ≈ 0, (31)

d�(ω) =
[
ηa Vb εab − 2i

λ
(ξ̄ η) + 4

λ2
dηJ

]
≈ 0, (32)

d�(ξ̄ ) =
[

i

2
ηa γ a ξ + i

λ
ηJ γ 5 ξ + 2i

λ
ω η + i γ b η V a εab − 4i

λ
γ 5dη

]
≈ 0,

(33)

d�a(ηa) = −
[
ω ∧ Vb εab + i

4
ξ̄ γ a ∧ ξ − dV a

]
≈ 0, (34)

d�J (ηJ ) = −
[

1

2
V a ∧ V b εab + i

2λ
(ξ̄ γ 5 ∧ ξ ) + 4

λ2
dω

]
≈ 0, (35)

d�̄(η) = −
[

2i

λ
ω ∧ ξ̄ − i ξ̄ γ b ∧ V a εab + 4i

λ
dξ̄ γ 5

]
≈ 0. (36)
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The Lagrangian density (16) is rheonomic, i.e. the solution for the curvatures
(Ra , R , ρ) associated to the gauge fields must be compatible with the Bianchi
identities. Moreover, the parametrization of these curvatures are obtained directly
from the 2-form field Equations (31)–(33) and they may be written as follows

Ra = 0, (37)

R = −1

8
λ2 V a ∧ V b εab − i

8
λ ξ̄ γ 5 ∧ ξ, (38)

ρ̄ = 1

4
λ ξ̄ γ b γ 5 ∧ V a εab. (39)

In fact from the aforementioned equations it can be seen that the inner–
outer (V ∧ ξ ) and the outer–outer (ξ ∧ ξ ) components of the curvatures remain
determined in terms of the inner–inner (V ∧ V ) component. In this case, the inner–
inner component of R is proportional to the square of the cosmological constant λ.

On the other hand, we can see how the auxiliary 0-form fields ηJ , ηa , and η can
be interpreted from the CCF. For these non-geometrical fields, the curvatures are
substituted by the covariant exterior derivatives. Thus, the 1-form field Equations
(34)–(36) are also rheonomic and they are written in inner and outer components
as follows

D ηa = dηa − ω εab ηb = ηJ V b εab + i εab η̄ γ b ξ, (40)

D ηJ = dηJ = −1

4
λ2 ηa εab Vb + i

2
λ η̄ ξ, (41)

D η = dη− 1

2
ω η γ 5 = 1

4
λ εab (γ b γ 5 η) V a + 1

4

(
ηJ + 1

2
λ ηa γ a γ 5

)
ξ. (42)

From the previous construction it can be seen that the CCF is covariant in all
the steps. However, it is not a proper Hamiltonian formalism because the extended
Hamiltonian HT is not a true generator of time evolutions and the form-brackets do
not contain the same information as the Poisson brackets. The CCF can be related
with the Hamiltonian formalism in components, and so the form-brackets can be
related to the Poisson brackets but not in a trivial way (Bergamin et al., 2004).
The integral relationship which relates the form-brackets (A,B) to the Poisson
brackets between forms [A(x) , B(y)] is given by (Foussats and Zandron, 1990a;
Nelson and Regge, 1986)

(−1)a+1
∫

�

α ∧ (A,B) ∧ β =
∫ ∫

�×�

α(x) ∧ [A(x), B(y)] ∧ β(y), (43)

where a is the degree of the form A and α, β are text forms.
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Once the spacetime decomposition is done and the surface � remains defined,
the ordinary Poisson brackets are obtained by expanding the forms A(x) and B(y)
in the holonomic bases dxi, dyj and then the ordinary Poisson brackets between
fields and momenta components can be used.

Before to conclude this section a further consideration about the exterior
canonical formalism must be done: as it was said, all the primary constraints
provided by the CCF are second-class ones, and so they are not related with
the gauge symmetry of the model. Moreover, the possibility of using different
Lagrangian densities means that there is not a unique set of canonical conjugate
momenta and consequently there is not a unique set of primary constraints in the
CCF. On the other hand, in the second-order formalism the second-class constraints
must be eliminated. As it is well known, this is done by defining the Dirac brackets
from the Poisson brackets. As it is well known, the Dirac brackets [F, G]D for
generic functional F and G are obtained from the set of second-class constraints
�A by means of the definition

[F, G]D = [F, G] − [F, �A]CAB[�B, G], (44)

where CAB[�B, �C] = δA
C for the compound indices A,B,C. To compute the

Dirac brackets (44) we must consider the restriction to � of all the second-class
constraints (21)–(26) i.e, �A = �A|� .

As it is well known, the main properties of the Dirac brackets are as follows:

(i) If one of the function F or G is first class, then

[F, G]D ≈ [F, G]. (45)

In particular for the Hamiltonian H holds

[F, H]D ≈ [F, H]. (46)

This means that the same equations of motion are obtained by using the
Poisson or the Dirac brackets. Thus, the rate of change in time of any
functional F of the canonical variables is also given by

Ḟ = [F, H]D. (47)

(ii) For any functional F of the canonical variables it is

[�A, H]D = 0, (48)

Therefore, we can set �A = 0 either before or after evaluating the Dirac
brackets.

As it is well known, once the Dirac brackets are evaluated from Equation
(44), the transition to quantum theory is realized as usual in a canonical formalism
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by replacing classical fields by quantum field operators acting on some Hilbert
space.

4. SECOND-ORDER FORMALISM AND CONSTRAINTS

When the model is considered from the quantum point of view, the second-
order formalism is necessary. It is in this formalism that the dynamical degrees of
freedom are separated from those of gauge degrees of freedom.

With this aim and in order to find the constraints in the second-order formal-
ism, the first step is to make the spacetime decomposition in the manifold M2.
Of course, when a privileged time direction is chosen in the manifold M2, the
manifest covariance is lost.

The notation and conventions are: tangent space indices are denoted by
a, b = 1, 2, spacetime indices by µ, ν = 0, 1, space indices i, j = 1; ηab = (±);
εab = Vaµ Vbν εµν ; g(2)

µν = Vaµ V a
ν . In the spacetime decomposition it is conve-

nient to introduce the shift and lapse functions Ni and N⊥, which determine the
components of the metric tensor. The zweibein 1-form is written Va = Vaµ dxµ,
where the holonomic components are Vaµ = (V (2)

ai , Va0), and

V
(2)
ai = V

(1)
ai = Vai, V (1)i

a = V i
a , V (2)i

a = V (1)i
a + (N⊥)−1 Ni na. (49)

The normal na satisfies na na = −1, naV
a
i = 0, na = −N⊥V 0

a and
(−g(2))1/2 = N⊥ g1/2 with g = det(g(1)).

An arbitrary vector Va can be decomposed as Va = V⊥ na + V i V a
i , with

V⊥ = −V⊥ = −na Va and Vi = Va Vai .
The time variable is chosen so that the 1-form dx0 can be detached. More

precisely, we consider fields and forms defined on a space-like x0 = t = t0 one-
dimensional “surface" �, by considering the injection map χ : � → M2. Thus,
the associated pullback χ∗ acts on any form by setting t = t0 and dt0 = 0.

In order to obtain the final form of the generator of time evolutions in the
canonical component formalism, the metricity condition in one and two dimen-
sions must be considered. The general equation relating the two-dimensional spin
connection ωab with the one-dimensional spin connection �ab writes

ωab
i = �ab

i + (nbV aj − naV bj ) Kij (50)

where the extrinsic curvature Kij was introduced.
Similarly, from the metricity condition in one dimension, the following equa-

tion holds

∂in
a + �ab

i nb = 0. (51)
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The second-order formalism is obtained by solving the torsion field equation,
given the following results for the spin connection

ωµ(V, ξ ) = ωµ(V ) + κµ(ξ ), (52)

where ωµ(V ) is given by

ωµ(V ) = −ενρ V a
µ ∂ν Vaρ, (53)

and the contorsion tensor κµ(ξ ) is

κµ(ξ ) = i

4
ξµ γ 5 γ ν ξν. (54)

All the quantities provided by the CCF i.e, total Hamiltonian, constraints and
field equations must be projected on the “surface” �. Once the canonical conjugate
momenta πA are written in terms of the spatial components dxi of the holonomic
basis, the Poisson brackets between pairs of canonical variables remain defined as
usual.

Another question to take into account is that the CCF plays, with respect to the
first-order canonical component formalism, an analogous role to that played by the
first-order canonical component formalism with respect to the second-order one.
Therefore, we will consider that all the primary constraints in the CCF remain at
least weakly zero in the canonical component formalism (see, for instance, Nelson
and Regge, 1986; Foussats and Zandron, 1990b).

On the other hand, we also assume that the restrictions to � of the constraints
(22)–(26) are strongly equal to zero i.e, χ∗ �A = 0. For the remaining constraint
�a(V ) the restriction to � is maintained as a weakly zero quantity

χ∗ �a = �a ≈ 0. (55)

The bosonic 2-form (28) provides by the CCF can be written as follows∫
HT =

∫
dx0 H̃, (56)

where the time variable is chosen so that the 1-form dx0 can be detached. The
remaining bosonic 1-form integrated in one dimension is the proper Hamiltonian
generator of time evolutions and it turns out to be of the form

H̃ =
∫

dx

(
1

2
ωab

0 Hab + Va0 Ha + ξ̄0α Hα

)
, (57)

where

Hab dx = (�a Vb − �b Va) |� ≈ 0, (58)

Ha dx = [−dηa +ηJ Vb εab +ω ε ηb − i (ξ̄ γb η) εab +ω εab �b] |� ≈ 0, (59)
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Hα dx =
[
−4i

λ
(γ 5 dη)α + i

2
ηa (γ a ξ )α + i

λ
ηJ (γ 5 ξ )α + 2i

λ
ω η

+ i (γ b η)α V a εab + i

2
(γ a ξ )α �a

] ∣∣
�

≈ 0. (60)

In Equations (57) and (60) the spinor index α was explicitly written.
Subsequently, by using Equations (23) and (25) the spinor field η and the

spin connection ω must be eliminated from Equations (59) and (60). Moreover,
the boson field ηa is eliminated by means of (32). In order to arrive at Equations
(58)–(60), the previous prescriptions about the role of the constraints in the CCF
have been taken into account.

Consequently, from (58) we can see that the antisymmetric weakly zero
quantity Hab = Jab is the generator of local Lorentz rotations, that in this context
naturally appears when the spacetime decomposition is carried out. Contrarily, in
the JT component formalism the generator of local Lorentz rotations J = 1

2 εab Jab

must be introduced ad hoc by demanding the closure of the constraint algebra.
By considering (21) and (55) the constraint �a can be computed explicitly,

and after some algebraic manipulation it is possible to write the following equation
for the 0-form Hab

Hab = �i
a Vbi − �i

b Vai = �i
a Vbi − �i

b Vai

+ 4

λ2
g1/2 (naV

i
b − nbV

i
a )

(
∂i ηJ − i

2
λ ξ̄i η

)
, (61)

where �i
a = πi

a |� , being πi
a the components of the conjugate momentum of the

zweibein field. In (61) we call �i
a = g1/2 ε0i N⊥ �a , that after some algebra it

can be written as

�j
a = Vai πij − g1/2 ε0j N⊥ ηa − na J j⊥ − 4

λ2
na g1/2 gij

(
∂i ηJ − i

2
λ ξ̄i η

)
.

(62)

Analogously, the other two 0-form Ha and Hα are first-class constraints and
they are written

Ha = −na

[
−πi

i Kk
k + g1/2 ηJ − 4

λ2
g1/2 gjk ∇j ∂kη

J − λ

4
ξ̄j γ⊥ πj

− 1

2
∂i(ξ̄

i γ⊥ γj πj ) − ∂i J i⊥
]
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+V ai

[
− 4

λ2
g1/2 (∂i ηJ ) Kk

k − ∂i πk
k + g−1/2 ∂ig

1/2 πk
k − 1

4
λ ξ̄i γj πj

+ −1

2
Kk

k (ξ̄ i γ⊥ γj πj ) + Ji⊥ Kk
k

]
, (63)

Hα = −γ 5 ∂i πiα + i

λ
g1/2 ηJ (γ⊥ γ i ξi)

α − λ

4
(γi γ 5 πi)α + i

2
πk

k (γ i ξi)
α

− 2i

λ2
(γ⊥ξ j )α ∂j ηJ − i g−1/2 (ξ̄ i γ⊥ γj πj γ⊥ ξi)

α

−λ2

8
g−1/2 πJ (γ⊥ γi γ 5 πi)α − i

2
(γ⊥ ξi)

α J i⊥ (64)

In Equations (63) and (64) the canonical conjugate momenta corresponding
to the bosonic fields gij and ηJ and the fermionic field ξiα were introduced, and
they respectively read

πij = −g1/2(K (ij ) − gij Kk
k ), (65)

πJ = 4

λ2
N⊥ εoi ωi(V, ξ ), (66)

πiα = 4i

λ
N⊥ εoi (γ 5 η)α, (67)

where K (ij ) is the symmetric part of the extrinsic curvature, and Kk
k its trace.

As it is usual in the literature, by using the shift and lapse functions Ni and
N⊥ already introduced, the first-class constraint Ha is decomposed as follows

Va0 Ha = N⊥ H⊥ + Ni Hi , (68)

where the components H⊥ and Hi are both first-class constraints.

Finally, it can be proven that the set of constraintsHA = (Hab, H⊥, Hi , Hα)
close the superalgebra

[HA(x), HB(y)] = 	C
AB HC(x) δ(x − y), (69)

where 	C
AB = RC

AB − CC
AB are the structure functions for curvatures RC

AB and
structure constant CC

AB of the graded Lie algebra. Equation (69) constitutes the so
called constraint superalgebra.

5. CONCLUSIONS

The supersymmetric extension of the (1 + 1) Jackiw–Teitelboim model was
considered in the framework of the CCF. The dynamics of this constrained
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system found by applying the geometrical prescriptions of the exterior canoni-
cal formalism for the supergroup manifold.

As it was shown, the CCF is not a proper canonical formalism because it
does not propagate data defined on an initial surface as it is required by a standard
mechanical system.

In spite of this, at classical level, the CCF is a powerful method to understand
the structure of the gravitational field. The CCF is covariant in all its steps because
of the use of exterior algebra. This allows to find the equations of motion and the
constraints in a very simple way without introducing complicate calculations. All
the primary constraints are second-class ones.

The relation between the CCF and the usual first-order canonical formalism
written in components was also given. This relation was done by means of a
non-trivial integral relationship between the form-brackets and the usual Poisson
brackets.

As it was shown, the torsion equation allows to obtain the second-order
canonical formalism starting from the first-order one.

In the Riemannian gravity case, the torsion equation Ra = 0 must be consid-
ered as an strongly equal to zero constraint, and so the spin connection is solved
in terms of the zweibein and the spinor field.

In order to go over the second-order formalism, the spacetime decomposition
in M2 was performed, losing the explicit covariance of all the equations. Once
this is done, the Hamiltonian system is treated as usual according to the Dirac
prescriptions. From the total Hamiltonian coming from the CCF is evaluated
the proper Hamiltonian (57) as generator of time evolution. As it was shown
the primary constraint �a = χ∗ �a obtained in the CCF plays an important role
in the construction of the first-class constraints. Finally, the proper Hamiltonian
(57) is given in terms of the first-class constraints which close the constraint
algebra. Therefore, all the Hamiltonian gauge symmetries remain determined and
the apparent gauge degrees of freedom can be unambiguously removed leaving
only the physical ones. When the model is considered from the quantum point of
view this last step is necessary.

Therefore, we conclude that the CCF can be used as an interesting formal
resource for deriving constraints and equations of motion due to their intrinsic
geometrical language.
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